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Abstract. We consider the Gaussian transition of one-dimensional quantum spin systems.
Although the Gaussian transition is the second-order phase transition, the usual finite-size scaling
technique does not work well in some cases. Using the conformal field theory, we present a
new method which overcomes this difficulty.

In this letter, we propose a method to determine the Gaussian critical point of quantum
spin chains. Although the finite-size scaling method is a powerful tool to determine the
critical point numerically, difficulty may occur for some Gaussian cases. An example is the
transition between the Haldane gap and the large-D phases of theS = 1, XXZ spin chains
with single-ion anisotropy [1, 2]. It was reported that there are two crossing points of the
scaled gapsL1E(L) and (L+ 1)1E(L+ 1) (L is the system size, and1E is the energy
gap), and the difference of these two points decreases asL increases. As we see below,
this behaviour comes from the structure of scaling operators.

For the S = 1/2, XXZ spin chain with next-nearest neighbour interactions, the
transition between the dimer and the Néel phases is also of Gaussian type. Based on the
renormalization group analysis [3], Nomura and Okamoto [4] proposed an elegant method
to determine the transition point by crossing of two levels with different symmetry. But,
unfortunately, there is a difference between theS = 1 and theS = 1/2 cases with the
periodic boundary condition; that is, theS = 1/2 case has an extraZ2 symmetry. So
we cannot simply apply the method of Nomura and Okamoto to theS = 1 case. By
changing the boundary condition, we have the other structure of operators. Therefore,
selecting appropriate boundary conditions, we can use the preferable structure to determine
the critical point.

As an effective theory of the one-dimensional (1D) quantum spin systems, the following
sine–Gordon model (in Euclidean spacetime) has been studied

S = 1

2πK

∫
dτ dx[(∂τφ)

2+ (∂xφ)2] + y

2πα2

∫
dτ dx cos

√
2φ (1)

whereα is a short distance cut-off. The dual fieldθ(τ, x) is defined as

∂τφ = −∂x(iKθ) ∂xφ = ∂τ (iKθ). (2)

We make the identificationφ ≡ φ + √2π, θ ≡ θ + √2π . There existsU(1) symmetry
for the fieldθ , but the second term of equation (1) violatesU(1) symmetry forφ. For the
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free-field theory, the scaling dimensions of the spin wave operator exp(±in
√

2θ) and the
vortex operator exp(±im

√
2φ) aren2/2K andKm2/2, where the integer variablesn and

m are electric and magnetic charges in the Coulomb gas picture.
After the scaling transformationα→ edlα, we have the following renormalization group

equations:

dK−1

dl
= 1

8
y2 dy

dl
=
(

2− K
2

)
y.

These are the famous recursion relations of Kosterlitz. Up to first order iny, we find
that y is an irrelevant field forK > 4 and relevant forK < 4. There is a separatrix
32K−1 − 8 lnK−1 − y2 = 8+ 8 ln 4 which separates the infrared unstable region from the
infrared stable region, and on this separatrix the Berezinskii–Kosterlitz–Thouless transition
occurs. The Gaussian fixed line lies ony = 0. ForK < 4 andy 6= 0, y flows to infinity.
For y > 0, 〈φ〉 is renormalized toπ/

√
2 asy →+∞ and fory < 0, 〈φ〉 → 0 asy →−∞.

The infinite two-dimensional plane can be mapped to a periodic strip of widthL by the
conformal mappingw = (L/2π) logz (z = τ + ix). In the rest of this letter, we consider
the boundary effect of this strip system.

First let us consider the following 1D Hamiltonian with the periodic boundary condition
[5]

H = H0+ λ

2π

∫ L

0
dxO1 (3)

whereH0 is a fixed-point Hamiltonian andO1(= O†1) is a scaling operator whose scaling
dimension isx1. According to Cardy [5], the following finite-size dependence of excitation
energies up to the first-order perturbation is obtained,

1En = 2π

L

(
xn + λCn1n

(
2π

L

)x1−2

+ · · ·
)

(4)

whereL is the length of the system,xn is the scaling dimension of the operatorOn. Cn1n

is the operator product expansion (OPE) coefficient of operatorsOn andO1 as

O1(z, z̄)On(0, 0) = Cn1n

(α
z

)h1
(α
z̄

)h̄1

On(0, 0)+ · · · (5)

in which h1 and h̄1 are the conformal weights ofO1 (x1 = h1 + h̄1). From equation (4),
we have the following RG equation

dλ

d lnL
= (x1− 2)λ.

When x1 < 2(relevant), the second-order phase transition occurs atλ = 0, whereas
x1 > 2(irrelevant), the second term in equation (4) is the finite-size corrections of the
excitation energies of the critical systems. Up to first-order perturbation theory, we find
that at the pointλ = 0 the scaled gapL1En does not depend on the system size, and the
scaled gaps for severalL cross linearly atλ = 0.

On the other hand, when the OPE coefficientCn1n becomes zero for some reason,
the above argument is insufficient and we must consider the second-order term ofλ in
equation (4). In this case, the scaled gapL1En may have an extremum at the pointλ = 0.
In practice, this is not a preferable thing, because the point of extremum is sensitive to
finite-size corrections of irrelevant operators such asL−2L̄−21 (x = 4).

In the sine–Gordon model (1), we substitute the operator
√

2 cos
√

2φ for O1. In
this case, there is no operatorOn with a non-zero value of〈O†n(z1)O1(z2)On(z3)〉. (This
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is related to the charge neutrality conditions in the Coulomb gas picture. Note that the
operators e±iφ/

√
2 are not allowed.) Thus the OPE coefficient in (4) is zero. This indicates

that we cannot expect the simple behaviour of the finite-size scaling method.
Let us return to model (1). If we put artificially half magnetic chargesm = ±1/2 in

the system, the OPE relations are

O1(z, z̄)Oe1/2(0, 0) =
√

2

2

(α
z

)K/4 (α
z̄

)K/4
Oe1/2(0, 0)+ · · ·

O1(z, z̄)Oo1/2(0, 0) = −
√

2

2

(α
z

)K/4 (α
z̄

)K/4
Oo1/2(0, 0)+ · · · (6)

where

O1 =
√

2 cos
√

2φ

Oe1/2 =
√

2 cos
1√
2
φ (7)

Oo1/2 =
√

2 sin
1√
2
φ

and there are non-zero OPE coefficients in (4).
For a physical example with half magnetic charges, Alcarazet al [6] studied theS = 1/2,

XXZ spin chain using the Bethe ansatz

H = −
L∑
j=1

[Sxj S
x
j+1+ Syj Syj+1+1Szj Szj+1]

with twisted boundary conditions

SxL+1± iSyL+1 = e±i8(Sx1 ± iSy1 ) SzL+1 = Sz1.
When8 = 0, this model corresponds to the Gaussian model withK = π/ arccos(1),
−1< 1 < 1. According to their numerical results, the twisted boundary conditions change
the electric and magnetic charges as

n→ n m→ m+ 8

2π
. (8)

Hence when the twist angle8 is π , half-integer magnetic charges appear. Recently, Fukui
and Kawakami [7] studied this model analytically and their results are consistent with
equation (8). However, the off-critical behaviours have not been treated.

To see what happens when the boundary condition is changed in the Coulomb gas
picture, we review the case of the following action [8]:

S = 1

2π
K

∫ ∞
−∞

dτ
∫ L

0
dx[(∂τ θ)

2+ (∂xθ)2] + 8√
2π
K

∫ ∞
−∞

dτ ∂xθ(τ, 0). (9)

Here we write the action with the fieldθ which is dual toφ, and we assume the periodic
boundary conditionφ(τ, L) = φ(τ, 0) + √2πM, θ(τ, L) = θ(τ, 0) + √2πN , where
M and N are integers. If we transform the fieldθ as θ(τ, x) → θ(τ, x) − 8x/√2L,
then we can eliminate the second term of equation (9) with the additional constant term
82K/2πL, but the boundary condition is changed asφ(τ, L) = φ(τ, 0) + √2πM,
θ(τ, L) = θ(τ, 0)+√2πN−8/√2, which corresponds to the defect line along the imaginary
time. When8 = 2Nπ (N is an integer), this is the periodic boundary condition.

After the dual transformation (2), the action (9) is transformed as

S = 1

2πK

∫ ∞
−∞

dτ
∫ L

0
dx[(∂τφ)

2+ (∂xφ)2] + i
√

2

(
8

2π

)∫ ∞
−∞

dτ ∂τφ(τ, 0). (10)
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This shows that there exist magnetic charges∓8/2π at τ = ±∞. Thus we obtain the
ground-state energy as [6]

L

2π
(E0(8)− E0(0)) = K

2

(
8

2π

)2

≡ x0(8) (11)

and the conformal anomaly number changes as

c(8) = 1− 12x0(8) = 1− 6

(
8

2π

)2

K. (12)

We denote the state corresponding to the primary operatorVn,m = exp(i
√

2nθ + i
√

2mφ)
as |n,m〉. Since there exists a magnetic charge8/2π at τ = −∞, we find the change of
this state as

|n,m〉8 = |n,m+8/2π〉8=0 (13)

and because there exists a magnetic charge−8/2π at τ = ∞, the conjugate state is

8〈n,m| = 0〈n,m+8/2π |. (14)

Hence we obtain [6]

En,m(8)− E0(0) = 2π

L

(
n2

2K
+ K

2

(
m+ 8

2π

)2)
(15)

or

En,m(8)− E0(8) = 2π

L

(
n2

2K
+ K

2
m

(
m+ 8

π

))
. (16)

From this equation, we find that the state|n, 0〉8 corresponds to|n,8/2π〉0 which has
excitation energyEn,0(8)− E0(8) = En,0(0)− E0(0), and momentumn8/L.

Note that Dotsenko and Fateev [9] considered the similar situation

S = 1

2πK

∫ ∞
−∞

dτ
∫ L

0
dx (∂µφ)

2+ i
√

2

(
8′

2π

)
φ(τ0, 0) (τ0→∞) (17)

in which the additional charge exists only atτ = ∞ but not atτ = −∞. If we set8′ = 28
[8], the change of conformal anomaly number is the same as equation (12), but the structure
of scaling operators is not the same as the case of (9). In the case of (17),|n,m〉8′ = |n,m〉0,
and the conjugate state changes as8′ 〈n,m| = 0〈n,m + 8′/2π | (which is consistent with
(16)). However, in (9) the conjugate relation does not change as equation (13) and (14),
and the model is as inc = 1 conformal field theory.

In the case of8 = π , we have half-integer magnetic charges effectively. In this case,
|0,−1〉π (= |0,−1/2〉0) and |0, 0〉π (= |0, 1/2〉0) are degenerate for the free-field theory.
Introducing the perturbation term of equation (1) and using first-order perturbation theory,
we obtain the hybridized states

|ψ1〉π = 1√
2
(|0,−1〉π + |0, 0〉π ) (18)

whose parity is even, and

|ψ2〉π = 1√
2i
(|0,−1〉π − |0, 0〉π ) (19)
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whose parity is odd. (Note that only when8 = 0 andπ , parity is a good quantum number.)
Using the OPE (6) and settingλ = y/√2, we obtain the finite-size dependence of energy
up to the first-order perturbation as

E1(π)− E0(0) = 2π

L

(
K

8
+ y

2

(
2π

L

)K/2−2

+ · · ·
)

E2(π)− E0(0) = 2π

L

(
K

8
− y

2

(
2π

L

)K/2−2

+ · · ·
)
. (20)

Thus we find that the energy eigenvalues of these states cross linearly aty = 0.
To verify the above things numerically, we study the followingS = 1 quantum spin

chain:

H =
N∑
j=1

(1− δ(−1)j )(Sxj S
x
j+1+ Syj Syj+1+1Szj Szj+1). (21)

The effective action of this model is described as equation (1). For the periodic boundary
condition, this model hasU(1) symmetry, and this symmetry restricts the operator structure.
The whole phase diagram was shown in [10]. The transition between the dimer and
the Haldane gap phases is of Gaussian type. Using the Lanczos method, we calculate
energy eigenvalues of finite systems (N = 8, 10, 12, 14, 16). Figure 1 shows the scaled gap
behaviour ofN = 12, 14, 16 systems with the periodic boundary condition for1 = 0.5.
We can see a minimum of the scaled gap. In figure 2, we show two low-lying energies
of the subspace

∑
Sz = 0 with the boundary conditionsSxN+1 = −Sx1 , SyN+1 = −Sy1 ,

SzN+1 = Sz1, which correspond toE1(π) andE2(π). We see the expected behaviour (20)
for this twisted boundary condition. Figure 3 shows the size dependence of the crossing
point. Convergence is very fast. The conformal anomaly number is calculated asc = 0.998
for the periodic boundary condition andc(π) = −3.194 for the8 = π twisted boundary
condition. In table 1, we show some extrapolated scaling dimensions. These numerical

Figure 1. The scaled gap behaviour ofN = 12(+), N = 14(♦) andN = 16(◦) systems with
the periodic boundary condition for1 = 0.5.
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Figure 2. The low-lying energies (E(8 = π)−E0(8 = 0)) of theN = 16 system for1 = 0.5.◦s are parity even states (E1(π)), and•s are parity odd states (E2(π)).

Figure 3. Size dependence of the crossing points. The extrapolated value isδc = 0.2524.

values are consistent with equations (11), (12), and (15). With this method, we can also
determine the Gaussian fixed line in the massless XY phase [11] and apply the approach to
the S = 1 spin chains with single-ion anisotropy [1, 2].

Lastly we consider the difference between theS = 1 models and the model treated by
Nomura and Okamoto [4]. The continuum effective action of the latter model is written as

S = 1

2πK

∫
dτ dx[(∂τφ)

2+ (∂xφ)2] + y2

2πα2

∫
dτ dx cos

√
8φ (22)
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Table 1. Scaling dimensions at the critical point1 = 0.5, δ = 0.2524. Here we have
extrapolated the corrections from the irrelevant fieldL2L̄21 (x = 4). For the value ofx0,1,
we take the average of the scaling dimensions of 2 cos

√
2φ and 2 sin

√
2φ.

x1,0 = 1/2K x0,1 = K/2 x0,1/2(= x0(π))

Scaling dimension 0.1786 1.400 0.3497
K 2.799 2.801 2.798

with the identificationφ = φ +√2π , θ = θ +√2π . ForK < 1, the operator
√

2 cos
√

8φ
is relevant and the second-order (Gaussian) transition occurs aty2 = 0. In this case, the
three-point function

〈e±i
√

2φ(z1)
√

2 cos
√

8φ(z2)e
±i
√

2φ(z3)〉0
is not zero, so it is enough to consider the periodic boundary condition. The action (22)
is invariant underφ → φ + π/√2, and thisZ2 symmetry separates the even and the odd
magnetic charge operators. However, the action (1) does not have this type ofZ2 symmetry.
For the case of (1), if we see the operator structure as the sum of the one with the periodic
boundary condition and the one with the8 = π twisted boundary condition,

[PBC(n,m = integer)] ⊕ [πTBC(n = integer, m = half integer)] (23)

the invarianceφ → φ + √2π separates the integer and the half-integer magnetic charge
operators. Therefore, the twisted boundary condition for (1) is needed to add an additional
Z2 symmetry. Consequently, the OPE structure of (1) with the periodic and the8 = π

twisted boundary conditions becomes the same as (22) (at least relating toφ).
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